Answer:

General Formulas and Concepts:
Calculus
Integrals
- Definite Integrals
- Area under the curve
- Integration Constant C
Integration Rule [Reverse Power Rule]: 
 
 
Integration Rule [Fundamental Theorem of Calculus 1]: 
 
 
Integration Property [Multiplied Constant]: 
 
 
Integration Property [Addition/Subtraction]: 
![\displaystyle \int {[f(x) \pm g(x)]} \, dx = \int {f(x)} \, dx \pm \int {g(x)} \, dx](https://img.qammunity.org/2021/formulas/mathematics/college/ytcjdhza3nvop8ti8icbfc977nz2k5ug6b.png) 
 
Area of a Region Formula: 
![\displaystyle A = \int\limits^b_a {[f(x) - g(x)]} \, dx](https://img.qammunity.org/2021/formulas/mathematics/college/8yomppr4m10wil0api6m0lag5b7hnc5c9y.png)
Explanation:
Step 1: Define
Identify
f(x) = 6x + 19
Interval [12, 15]
Step 2: Find Area
- Substitute in variables [Area of a Region Formula]: 
  
- [Integral] Rewrite [Integration Property - Addition/Subtraction]: 
  
- [Integrals] Rewrite [Integration Property - Multiplied Constant]: 
  
- [Integrals] Integrate [Integration Rule - Reverse Power Rule]: 
  
- Evaluate [Integration Rule - Fundamental Theorem of Calculus 1]: 
  
- Simplify: 
  
Topic: AP Calculus AB/BC (Calculus I/I + II) 
Unit: Integration 
Book: College Calculus 10e