Answer:
 f(x) = 2x³ - 10x² - 34x + 42 
Explanation:
The standard form of a cubic equation is f(x) = ax³ + bx² + cx + d 
Given conditions are: 
First: Zeros of the cubic function are - 3, 1, and 7 
Second: f(- 2) = 54 
a(-3)³ + b(-3)² + c(-3) + d = 0 ⇔ - 27a + 9b - 3c + d = 0 ...... (1) 
a + b + c + d = 0 ......... (2) 
a(7)³ + b(7)² + c(7) + d = 0 ⇔ 343a + 49b + 7c + d = 0 ....... (3) 
a(-2)³ + b(-2)² + c(-2) + d = 54 ⇔ - 8a + 4b - 2c + d = 54 ...... (4) 
We have 4 equations with 4 unknown variables. 
Use Cramer's rule to solve the system 
A = 
![\left[\begin{array}{cccc}-27&9&-3&1\\1&1&1&1\\343&49&7&1\\-8&2&-2&1\end{array}\right]](https://img.qammunity.org/2021/formulas/mathematics/high-school/u7i282andzifootiwvpac0xbz9jn0jw6ad.png) = 6,480
 = 6,480 
 =
 = 
![\left[\begin{array}{cccc}0&9&-3&1\\0&1&1&1\\0&49&7&1\\54&2&-2&1\end{array}\right]](https://img.qammunity.org/2021/formulas/mathematics/high-school/lzoqi7y2vbiiz4xtp6j55vtppns8p0swbs.png) = 12,960
 = 12,960 
 =
 = 
![\left[\begin{array}{cccc}-27&0&-3&1\\1&0&1&1\\343&0&7&1\\-8&54&-2&1\end{array}\right]](https://img.qammunity.org/2021/formulas/mathematics/high-school/lb0w692s9loe6q8tbvtyp3oz94kczggc5u.png) = - 64,800
 = - 64,800 
 =
 = 
![\left[\begin{array}{cccc}-27&9&0&1\\1&1&0&1\\343&49&0&1\\-8&2&54&1\end{array}\right]](https://img.qammunity.org/2021/formulas/mathematics/high-school/kreh0phiozmunj5l40u8c0t982kigtejxu.png) = - 220,320
 = - 220,320 
 =
 = 
![\left[\begin{array}{cccc}-27&9&-3&0\\1&1&1&0\\343&49&7&0\\-8&2&-2&54\end{array}\right]](https://img.qammunity.org/2021/formulas/mathematics/high-school/zy3qh3qtfgo13ywrsdlq2trjhvda8n6l84.png) = 272,160
 = 272,160 
a = 
 = 2
 = 2 
b = 
 = - 10
 = - 10 
c = 
 = - 34
 = - 34 
d = 
 = 42
 = 42 
f(x) = 2x³ - 10x² - 34x + 42