asked 9.3k views
0 votes
A 500 N weight is hung at the middle of a rope attached to two buildings at the same level. If the breaks in the tension exceed 1800 N, what is the minimum angle the rope can make with the horizontal?

1 Answer

5 votes

Not sure what you mean by "breaks in the tension" but I suspect you mean the rope will come apart if the tension in the rope exceeds 1800 N.

In the free body diagram for the 500 N weight, we have a figure Y with the net force equations

• horizontal net force:

∑ F[hor] = T₁ cos(θ) - T₂ cos(θ) = 0

• vertical net force:

∑ F[ver] = T₁ sin(θ) + T₂ sin(θ) - 500 N = 0

From the first equation, it follows that T₁ = T₂, so I'll denote their magnitude by T alone. From the second equation, we have

2 T sin(θ) = 500 N

and if the maximum permissible tension is T = 1800 N, it follows that

sin(θ) = (500 N) / (3600 N) ⇒ θ = arcsin(5/36) ≈ 7.9°

is the smallest angle the rope can make with the horizontal.

answered
User Stafford
by
8.2k points

No related questions found