Answer:
ANSWER
Let A(4,6), B(0,4), C(6,2) be the vertices of the given △ABC.
Let P(x,y) be the circumcentre of △ABC. Then,
PA=PB=PC⟹PA 
2
 =PB 
2
 =PC 
2
 
Now, PA 
2
 =PB 
2
 
(x−4) 
2
 +(y−6) 
2
 =(x−0) 
2
 +(y−4) 
2
 
x 
2
 +y 
2
 −8x−12y+52=x 
2
 +y 
2
 −8y+16
8x+4y=36
2x+y=9 .......(1)
Again, PB 
2
 =PC 
2
 
(x−0) 
2
 +(y−4) 
2
 =(x−6) 
2
 +(y−2) 
2
 
x 
2
 +y 
2
 −8y+16=x 
2
 +y 
2
 −12x−4y+40
12x−4y=24
3x−y=6 .....(2)
Solving equation 1 and 2, we get,
x=3,y=3
Therefore, the coordinates of circumcentre of △ABC are P(3,3).
Circumradius = PA= 
(4−3) 
2
 +(6−3) 
2
 
 
 = 
10
 
 units
Hope it is helpful to you