Answer:
 6 
 ————— 
 n + 8
Explanation:
Step by Step Solution: 
More Icon 
STEP 
1 
: 
Equation at the end of step 1 
 ((12•(n3))-(24•(n2))) (12n-42) 
 —————————————————————•——————————————————— 
 (((4•(n2))-22n)+28) ((6•(n3))+(24•3n2)) 
 STEP 
2 
 : 
Equation at the end of step 
2 
: 
 ((12•(n3))-(24•(n2))) (12n-42) 
 —————————————————————•—————————————————— 
 (((4•(n2))-22n)+28) ((2•3n3)+(24•3n2)) 
STEP 
3 
: 
 12n - 42 
 Simplify —————————— 
 6n3 + 48n2 
STEP 
4 
: 
Pulling out like terms 
 4.1 Pull out like factors : 
 
 12n - 42 = 6 • (2n - 7) 
 
STEP 
5 
: 
Pulling out like terms 
 5.1 Pull out like factors : 
 
 6n3 + 48n2 = 6n2 • (n + 8) 
 
Equation at the end of step 
5 
: 
 ((12•(n3))-(24•(n2))) (2n-7) 
 —————————————————————•———————— 
 (((4•(n2))-22n)+28) n2•(n+8) 
 STEP 
6 
 : 
Equation at the end of step 
6 
: 
 ((12•(n3))-(24•(n2))) (2n-7) 
 —————————————————————•———————— 
 ((22n2-22n)+28) n2•(n+8) 
 STEP 
7 
 : 
Equation at the end of step 
7 
: 
 ((12•(n3))-(23•3n2)) (2n-7) 
 ————————————————————•———————— 
 (4n2-22n+28) n2•(n+8) 
 STEP 
8 
 : 
Equation at the end of step 
8 
: 
 ((22•3n3) - (23•3n2)) (2n - 7) 
 ————————————————————— • ———————————— 
 (4n2 - 22n + 28) n2 • (n + 8) 
STEP 
9 
: 
 12n3 - 24n2 
 Simplify —————————————— 
 4n2 - 22n + 28 
STEP 
10 
: 
Pulling out like terms 
 10.1 Pull out like factors : 
 
 12n3 - 24n2 = 12n2 • (n - 2) 
 
STEP 
11 
: 
Pulling out like terms 
 11.1 Pull out like factors : 
 
 4n2 - 22n + 28 = 2 • (2n2 - 11n + 14) 
 
Trying to factor by splitting the middle term 
 11.2 Factoring 2n2 - 11n + 14 
 
The first term is, 2n2 its coefficient is 2 . 
The middle term is, -11n its coefficient is -11 . 
The last term, "the constant", is +14 
 
Step-1 : Multiply the coefficient of the first term by the constant 2 • 14 = 28 
 
Step-2 : Find two factors of 28 whose sum equals the coefficient of the middle term, which is -11 . 
 
 -28 + -1 = -29 
 -14 + -2 = -16 
 -7 + -4 = -11 That's it 
 
Step-3 : Rewrite the polynomial splitting the middle term using the two factors found in step 2 above, -7 and -4 
 2n2 - 7n - 4n - 14 
 
Step-4 : Add up the first 2 terms, pulling out like factors : 
 n • (2n-7) 
 Add up the last 2 terms, pulling out common factors : 
 2 • (2n-7) 
Step-5 : Add up the four terms of step 4 : 
 (n-2) • (2n-7) 
 Which is the desired factorization 
 
Canceling Out : 
 11.3 Cancel out (n-2) which appears on both sides of the fraction line. 
 
Equation at the end of step 
11 
: 
 6n2 (2n - 7) 
 —————— • ———————————— 
 2n - 7 n2 • (n + 8) 
STEP 
12 
: 
Canceling Out 
 12.1 Cancel out (2n-7) which appears on both sides of the fraction line. 
 
Canceling Out : 
 12.2 Canceling out n2 as it appears on both sides of the fraction line 
 
Final result : 
 6 
 ————— 
 n + 8