60
See steps
Step by Step Solution:
More Icon
Reformatting the input :
Changes made to your input should not affect the solution:
(1): "2.7" was replaced by "(27/10)". 8 more similar replacement(s)
STEP
1
:
 27
 Simplify ——
 10
Equation at the end of step
1
:
 27 62 93 12 62 93 12 27
 (((——•——)-(——•——))+(——•——))-(——•——)
 10 10 10 10 10 10 10 10
STEP
2
:
 6
 Simplify —
 5
Equation at the end of step
2
:
 27 62 93 12 62 93 6 27
 (((——•——)-(——•——))+(——•——))-(—•——)
 10 10 10 10 10 10 5 10
STEP
3
:
 93
 Simplify ——
 10
Equation at the end of step
3
:
 27 62 93 12 62 93 81
 (((——•——)-(——•——))+(——•——))-——
 10 10 10 10 10 10 25
STEP
4
:
 31
 Simplify ——
 5 
Equation at the end of step
4
:
 27 62 93 12 31 93 81
 (((——•——)-(——•——))+(——•——))-——
 10 10 10 10 5 10 25
STEP
5
:
 6
 Simplify —
 5
Equation at the end of step
5
:
 27 62 93 6 2883 81
 (((——•——)-(——•—))+————)-——
 10 10 10 5 50 25
STEP
6
:
 93
 Simplify ——
 10
Equation at the end of step
6
:
 27 62 93 6 2883 81
 (((——•——)-(——•—))+————)-——
 10 10 10 5 50 25
STEP
7
:
 31
 Simplify ——
 5 
Equation at the end of step
7
:
 27 31 279 2883 81
 (((—— • ——) - ———) + ————) - ——
 10 5 25 50 25
STEP
8
:
 27
 Simplify ——
 10
Equation at the end of step
8
:
 27 31 279 2883 81
 (((—— • ——) - ———) + ————) - ——
 10 5 25 50 25
STEP
9
:
Calculating the Least Common Multiple
 9.1 Find the Least Common Multiple
 The left denominator is : 50 
 The right denominator is : 25 
 Number of times each prime factor
 appears in the factorization of:
 Prime 
 Factor Left 
 Denominator Right 
 Denominator L.C.M = Max 
 {Left,Right} 
2 1 0 1
5 2 2 2
 Product of all 
 Prime Factors 50 25 50
 Least Common Multiple:
 50 
Calculating Multipliers :
 9.2 Calculate multipliers for the two fractions
 Denote the Least Common Multiple by L.C.M 
 Denote the Left Multiplier by Left_M 
 Denote the Right Multiplier by Right_M 
 Denote the Left Deniminator by L_Deno 
 Denote the Right Multiplier by R_Deno 
 Left_M = L.C.M / L_Deno = 1
 Right_M = L.C.M / R_Deno = 2
Making Equivalent Fractions :
 9.3 Rewrite the two fractions into equivalent fractions
Two fractions are called equivalent if they have the same numeric value.
For example : 1/2 and 2/4 are equivalent, y/(y+1)2 and (y2+y)/(y+1)3 are equivalent as well.
To calculate equivalent fraction , multiply the Numerator of each fraction, by its respective Multiplier.
 L. Mult. • L. Num. 837
 —————————————————— = ———
 L.C.M 50 
 R. Mult. • R. Num. 279 • 2
 —————————————————— = ———————
 L.C.M 50 
Adding fractions that have a common denominator :
 9.4 Adding up the two equivalent fractions
Add the two equivalent fractions which now have a common denominator
Combine the numerators together, put the sum or difference over the common denominator then reduce to lowest terms if possible:
 837 - (279 • 2) 279
 ——————————————— = ———
 50 50 
Equation at the end of step
9
:
 279 2883 81
 (——— + ————) - ——
 50 50 25
STEP
10
:
Adding fractions which have a common denominator
 10.1 Adding fractions which have a common denominator
Combine the numerators together, put the sum or difference over the common denominator then reduce to lowest terms if possible:
 279 + 2883 1581
 —————————— = ————
 50 25 
Equation at the end of step
10
:
 1581 81
 ———— - ——
  25 25
STEP
11
:
Adding fractions which have a common denominator
 11.1 Adding fractions which have a common denominator
Combine the numerators together, put the sum or difference over the common denominator then reduce to lowest terms if possible:
 1581 - (81) 60
 ——————————— = ——
 25 1 
Final result :
 60