Answer:
x = 2, -1+i√3, −1−i√3
Explanation:
Factoring the left side of the equation: 
x^3−2^3=0 
(x−2)(x^2+x⋅2+2^2)=0 
(x−2)(x^2+2x+2^2)=0 
(x−2)(x^2+2x+4)=0 
x−2=0 
x^2+2x+4=0 
 
First solution: 
x−2=0 
x=2 
 
Second and third solution: 
x^2+2x+4=0 
−2±√2^2−4⋅(1⋅4)/2⋅1 
x=−2±2i√3/2⋅1 
x=−2±2i√3/2 
−2±2i√3/2 
x=−1±i√3 
x=−1+i√3 
x=−1−i√3 
x=−1+i√3,−1−i√3 
 
Final answer: 
x=2,−1+i√3,−1−i√3