Answer:
Explanation:

We have the following vectors : 
![w=\left[\begin{array}{c}3&-1&2\end{array}\right]](https://img.qammunity.org/2021/formulas/mathematics/college/jw6b94nxjwmr7jnkrl04bg4tshp3oj08lz.png) 
 
![V_(1)=\left[\begin{array}{c}-3&1&2\end{array}\right]](https://img.qammunity.org/2021/formulas/mathematics/college/k1cpcgbubs6kwfesjrcvnndi2lcg3p3x7s.png)
![V_(2)=\left[\begin{array}{c}6&-2&3\end{array}\right]](https://img.qammunity.org/2021/formulas/mathematics/college/mgbilw75nrzcp2jpq15nx3d56i5rva58aw.png)
In order to express 
 as a linear combination of the vectors
 as a linear combination of the vectors 
 and
 and 
 , we will search for
, we will search for 
 ∈ IR such that :
 ∈ IR such that : 
 (I)
 (I)
Now we are going to work matrixically with the equation (I) : 
![a\left[\begin{array}{c}-3&1&2\end{array}\right]+b\left[\begin{array}{c}6&-2&3\end{array}\right]=\left[\begin{array}{c}3&-1&2\end{array}\right]](https://img.qammunity.org/2021/formulas/mathematics/college/zfcrbxe3bu5jkvpt6mng5m75kvcyuarsse.png)
Distributing mathematically and matching ''component to component'' we lead to the following equations : 

Working with the system associated matrix : 
![\left[\begin{array}{ccc}-3&6&3\\1&-2&-1\\2&3&2\end{array}\right]](https://img.qammunity.org/2021/formulas/mathematics/college/pe87t1h9vdtn8ynjp2t7st8qazdjyjp35n.png)
Applying matrix operations we lead to the following equivalent matrix : 
![\left[\begin{array}{ccc}1&0&(1)/(7)\\0&1&(4)/(7)\\0&0&0\end{array}\right]](https://img.qammunity.org/2021/formulas/mathematics/college/ycd14pakc4nmqit9zsxk5664bij9tojscr.png)
In this matrix we obtain that :
 and
 and 

We can verify this solution by replacing the values of 
 and
 and 
 in the equation (I) :
 in the equation (I) : 
 ⇒
 ⇒
![((1)/(7)).\left[\begin{array}{c}-3&1&2\end{array}\right]+((4)/(7)).\left[\begin{array}{c}6&-2&3\end{array}\right]=\left[\begin{array}{c}3&-1&2\end{array}\right]](https://img.qammunity.org/2021/formulas/mathematics/college/nh7bclix989tocz4mdmceyr7222hwxdwvx.png) ⇒
 ⇒
![\left[\begin{array}{c}3&-1&2\end{array}\right]=\left[\begin{array}{c}3&-1&2\end{array}\right]](https://img.qammunity.org/2021/formulas/mathematics/college/5dzeos4xnmpnbd4pkcwx0s3uff3i0d8ype.png)