Answer:
64.52 mg. 
Step-by-step explanation:
The following data were obtained from the question:
Half life (t½) = 1590 years
Initial amount (N₀) = 100 mg
Time (t) = 1000 years. 
Final amount (N) =.? 
Next, we shall determine the rate constant (K). 
This is illustrated below:
Half life (t½) = 1590 years
Rate/decay constant (K) =? 
K = 0.693 / t½
K = 0.693/1590
K = 4.36×10¯⁴ / year. 
Finally, we shall determine the amount that will remain after 1000 years as follow:
Half life (t½) = 1590 years
Initial amount (N₀) = 100 mg
Time (t) = 1000 years.
Rate constant = 4.36×10¯⁴ / year. 
Final amount (N) =.? 
Log (N₀/N) = kt/2.3
Log (100/N) = 4.36×10¯⁴ × 1000/2.3
Log (100/N) = 0.436/2.3
Log (100/N) = 0.1896
Take the antilog 
100/N = antilog (0.1896)
100/N = 1.55
Cross multiply 
N x 1.55 = 100
Divide both side by 1.55
N = 100/1.55
N = 64.52 mg
Therefore, the amount that remained after 1000 years is 64.52 mg