asked 11.4k views
5 votes
Given the set of data: 24, 43, 65, 12, 31, 78, 43, 24, 25, 18, 29, 53, 18, 23, 20, 43, 53, 25 a. Find the mode. b. Find the median. c. Find the mean, to the nearest tenth. d. Find the midrange. e. Find the standard deviation, to the nearest hundredth. f. Determine the quartiles.

1 Answer

6 votes

Answer: a. 43

b. 27

c. 34.8

d. 45

e. 17.72

f. First quartile = 23

Second quartile = 27

Third quartile =43

Explanation:

The given set of data: 24, 43, 65, 12, 31, 78, 43, 24, 25, 18, 29, 53, 18, 23, 20, 43, 53, 25

Arrange in Ascending order:

12 ,18,18 , 20 ,23 ,24 , 24 ,25 , 25 , 29, 31, 43, 43 , 43 , 53 , 53, 65 , 78

Total data points: n= 18 ( even)

a. Mode= Most repeated data value = 43

i.e. mode =43

b. Median =
\frac{((n)/(2))^(th)\text{term}+((n)/(2)+1)^(th)\text{term}}{2}


=\frac{((18)/(2))^(th)\text{term}+((18)/(2)+1)^(th)\text{term}}{2}\\\\=\frac{9^(th)\text{term}+10^(th)\text{term}}{2}\\\\=(25+29)/(2)\\\\=27

i.e. median = 27

c. Mean = (sum of data points)÷n

Sum =12+18+18 + 20 +23 +24 + 24 +25 + 25 + 29+ 31+ 43+ 43 + 43 + 53 + 53+ 65 + 78=627

Mean = 627 ÷ 18 ≈34.8

i.e. Mean = 34.8

d. Mid range =
\frac{\text{Maximum value +Minimum value}}{2}


=(78+12)/(2)\\\\=(90)/(2)\\\\=45

e. Standard deviation =
\sqrt{(\sum (x-mean)^2)/(n)}
\sum (x-\mean)^2=(12-34.8)^2+(18-34.8)^2+(18 -34.8)^2+( 20 -34.8)^2+(23 -34.8)^2+(24 -34.8)^2+( 24 -34.8)^2+(25 -34.8)^2+2( 25 -34.8)^2+( 29-34.8)^2+( 31-34.8)^2+( 43-34.8)^2+( 43 -34.8)^2+( 43 -34.8)^2+( 53 -34.8)^2+( 53-34.8)^2+( 65 -34.8)^2+( 78-34.8)^2\\\\=5654.56


\sqrt{(5654.56)/(18)}=√(314.1422)\approx17.72

f. First quartile = Median of first half (12 ,18,18 , 20 ,23 ,24 , 24 ,25 , 25)

= 23 (middle most value)

Second quartile = Median = 27

Third quartile = Median of second half (29, 31, 43, 43 , 43 , 53 , 53, 65 , 78)

= 43 (middle most value)

answered
User Mustansar Fiaz
by
8.4k points
Welcome to Qamnty — a place to ask, share, and grow together. Join our community and get real answers from real people.