Answer:
Area of ABCD = 959.93 units²
Explanation:
a). By applying Sine rule in the ΔABD,
 

 

 Sin∠DBA = 

 m∠DBA = 

 m∠DBA = 45.64°
 Therefore, m∠ADB = 180° - (110° + 45.64°) = 24.36°
 m∠ADB = 24.36°
c). Area of ABCD = Area of ΔABD + Area of ΔBCD
 Area of ΔABD = AD×BD×Sin(
 )
)
 = 35×46Sin(12.18)
 = 339.68 units²
 Area of ΔBCD = BD×BC×Sin(
 )°
)°
 = 46×27×(0.4994)
 = 620.25 units²
 Area of ABCD = 339.68 + 620.25
 = 959.93 units²