Answer:
look below
Explanation:
y = 2 (x + 3)^2 - 2 
Geometric figure: parabola 
Alternate forms: 
y = 2 (x + 2) (x + 4) 
y = 2 (x^2 + 6 x + 8) 
-2 x^2 - 12 x + y - 16 = 0 
Expanded form: 
y = 2 x^2 + 12 x + 16 
Roots: 
x = -4 
x = -2 
Properties as a real function: 
Domain - R (all real numbers) 
Range - {y element R : y>=-2} 
Partial derivatives: 
d/dx(2 (x + 3)^2 - 2) = 4 (x + 3) 
d/dy(2 (x + 3)^2 - 2) = 0 
Implicit derivatives: 
(dx(y))/(dy) = 1/(12 + 4 x) 
(dy(x))/(dx) = 4 (3 + x) 
Global minimum: 
min{2 (x + 3)^2 - 2} = -2 at x = -3