Answer:
The required simplified base would be 3∛4 
Explanation:
Given exponential function that: 
![f(x)=(1)/(4)(\sqrt[3]{108})^x](https://img.qammunity.org/2021/formulas/mathematics/middle-school/xeks027h869f79nedoolxhcs0g7ixwi58a.png) 
 
As we can see, 108 is the base of the exponential function with the form: 
f(x) = a
 
 
So, we can factor 108 = 2 × 2 × 3 × 3 × 3 
<=> 108 = 4 × 3³ 
Hence, 
![\sqrt[3]{108} = \sqrt[3]{4* 3^3}](https://img.qammunity.org/2021/formulas/mathematics/middle-school/lif25g78nia1tj53x12wsbz7px96wp9qdt.png) 
 
So we have: 
![\sqrt[3]{108}=\sqrt[3]{4}* \sqrt[3](3^3)](https://img.qammunity.org/2021/formulas/mathematics/middle-school/o2kvj50qd7w2jo0xvzoylcr6hteenvm5t5.png) 
 
<=> 
![\sqrt[3]{108}=\sqrt[3]{4}* (3^3)^(1)/(3)](https://img.qammunity.org/2021/formulas/mathematics/middle-school/n8z9xew89dee8kzxfpzdilu6ircoenj54s.png) 
 
<=> 
![\sqrt[3]{108}=\sqrt[3]{4}* 3^{3* (1)/(3)}](https://img.qammunity.org/2021/formulas/mathematics/middle-school/nuf9ydlh2m6iotxli8n3mhy6ovvt5ubtrw.png) 
 
<=> 
![\sqrt[3]{108}=3\sqrt[3]{4}](https://img.qammunity.org/2021/formulas/mathematics/middle-school/3kjf4qdyffkqpfsdjvzhnbof4344jan6na.png) 
 
Hence, the required simplified base would be 3∛4