asked 235k views
5 votes
Write out the form of the partial fraction decomposition of the function (See Example). Do not determine the numerical values of the coefficients. (If the partial fraction decomposition does not exist, enter DNE.) (a) x4 + 7 x5 + 5x3 A x​+ B x2​+ C x3​+ Dx+E x2+5​ (b) 2 (x2 − 9)2

asked
User Schub
by
8.2k points

1 Answer

4 votes

Answer:

a.
(A)/(x)+(B)/(x^2)+(C)/(x^3)+(Dx+E)/(x^2+5)

b.
(A)/(x+3)+(B)/(x-3)+(C)/((x-3)^2)+(D)/((x+3)^2)

Step-by-step explanation:

a.We are given that


(x^4+7)/(x^5+5x^3)


(x^4+7)/(x^5+5x^3)=(x^4+7)/(x^3(x^2+5))

Using partial fraction decomposition of the given function


(x^4+7)/(x^3(x^2+5))=(A)/(x)+(B)/(x^2)+(C)/(x^3)+(Dx+E)/(x^2+5)

Using the formula


(1)/(x^3(x^2+a))=(A)/(x)+(B)/(x^2)+(C)/(x^3)+(Dx+E)/(x^2+a)

b.
(2)/((x^2-9)^2)


(2)/((x^2-3^2)^2)=(2)/((x+3)^2(x-3)^2)

Using property
a^2-b^2=(a+b)(a-b)


(2)/((x+3)^2(x-3)^2)=(A)/(x+3)+(B)/(x-3)+(C)/((x-3)^2)+(D)/((x+3)^2)

Using the property


(1)/(x^2)=(A)/(x)+(B)/(x^2)

answered
User Jin Kwon
by
8.4k points

No related questions found

Welcome to Qamnty — a place to ask, share, and grow together. Join our community and get real answers from real people.