y 
= 
− 
( 
x 
− 
2 
) 
2 
+ 
16 
 is the vertex form 
 
Explanation: 
The vertex form of a quadratic function is given by 
 
y 
= 
a 
( 
x 
− 
h 
) 
2 
+ 
k 
 
where (h, k) is the vertex of the parabola. 
 
when written in vertex form 
 
(h, k) is the vertex of the parabola and x = h is the axis of symmetry 
 
the h represents a horizontal shift (how far left, or right the graph has shifted from x = 0) 
 
the k represents a vertical shift (how far up, or down the graph has shifted from y = 0) 
 
Now let convert this 
y 
= 
− 
x 
2 
+ 
4 
x 
+ 
12 
 into vertex form 
 
y 
= 
− 
x 
2 
+ 
4 
x 
+ 
12 
 
y 
− 
12 
= 
− 
x 
2 
+ 
4 
x 
 
y 
− 
12 
= 
− 
( 
x 
2 
− 
4 
x 
) 
 
y 
− 
12 
= 
− 
( 
x 
2 
− 
4 
x 
+ 
4 
− 
4 
) 
 
y 
− 
12 
= 
− 
( 
x 
2 
− 
4 
x 
+ 
4 
) 
+ 
4 
 
y 
− 
16 
= 
− 
( 
x 
2 
− 
4 
x 
+ 
4 
) 
 
y 
− 
16 
= 
− 
( 
x 
− 
2 
) 
2 
 
y 
= 
− 
( 
x 
− 
2 
) 
2 
+ 
16 
 is the vertex form 
 
show the vertex in the figure below 
 
graph{-x^2+4x+12 [-10.06, 15.25, 6.58, 19.25]} Hope iam right