asked 30.8k views
2 votes
A research company desires to know the mean consumption of meat per week among people over age 40. A sample of 610 people over age 40 was drawn and the mean meat consumption was 3.1 pounds. Assume that the population standard deviation is known to be 1.1 pounds. Construct the 85% confidence interval for the mean consumption of meat among people over age 40. Round your answers to one decimal place.

asked
User Shoover
by
7.7k points

1 Answer

2 votes

Answer:
(3.0,\ 3.2)

Explanation:

Confidence interval for population mean is given by :-


\overline{x}\pm z_(\alpha/2)(\sigma)/(√(n)) (1)

, where
\overline{x} = Sample mean


z_(\alpha/2)= Critical z-value


\sigma = Population standard deviation.

n= Sample size.

As per given , we have

n= 610


\sigma=1.1


\overline{x}=3.1

Significance level for 85% confidence :
\alpha=1-0.85=0.15

By z-table critical two tailed z-value :
z_(\alpha/2)=z_(0.075)=1.44

Put all values in (1) , we get


3.1\pm 1.44(1.1)/(√(610))


3.1\pm 1.44(1.1)/(24.698)


3.1\pm 0.064


=(3.1-0.064,\ 3.1+0.064)=(3.036,\ 3.164)\approx(3.0,\ 3.2)

Hence, the 85% confidence interval for the mean consumption of meat among people over age 40. =
(3.0,\ 3.2)

answered
User Alex Trevithick
by
8.3k points

No related questions found

Welcome to Qamnty — a place to ask, share, and grow together. Join our community and get real answers from real people.