Answer:
Explanation:
AC = AD So, Δ ACD is as isosceles triangle.
∠ADC ≅∠ACD = 63°
In ΔACD ,
 63 + 63 + ∠DAC = 180 {Angle sum property of triangle}
 126 + ∠DAC = 180
 ∠DAC = 180- 126
 ∠DAC = 54°
In ΔABC,
90+ 37 + ∠CAB = 180
 127 + ∠CAB = 180
 ∠CAB = 180 - 127
 ∠CAB = 53
∠EAD + ∠DAC + ∠CAB = 180 {Straight line angles}
 x + 54 + 53 = 180
 x + 107 = 180
 x = 180 -107
x = 73°