asked 148k views
1 vote

\\ x^(2) √(x) \sqrt[n]{x} (x)/(y) x_(123) \leq \geq \\eq \pi \alpha \beta \left \{ {{y=2} \atop {x=2}} \right. \int\limits^a_b {x} \, dx \lim_(n \to \infty) a_n \int\limits^a_b {x} \, dx \left \{ {{y=2} \atop {x=2}} \right. \left \{ {{y=2} \atop {x=2}} \right. \int\limits^a_b {x} \, dx \lim_(n \to \infty) a_n \\ x^(2) \geq \leq \\eq \lim_(n \to \infty) a_n \int\limits^a_b {x} \, dx \leq \\ √(x) √(x) \beta \beta \beta (x)/(y) \\eq \leq \left \{ {{y=2} \atop {x=2}} \r

1 Answer

4 votes

Answer:

?????

Explanation: ????

answered
User David Yaw
by
7.9k points
Welcome to Qamnty — a place to ask, share, and grow together. Join our community and get real answers from real people.