asked 198k views
1 vote
Find the values of the six trigonometric functions of an angle in standard position if the point with coordinates (84, 13) lies on its terminal side.

asked
User Pravnar
by
7.6k points

1 Answer

5 votes

Answer:


\sin \theta = 0.153,
\cos \theta = 0.988,
\tan \theta = 0.155,
\cot \theta = 6.462,
\sec \theta = 1.012,
\csc \theta = 6.538

Explanation:

Let be the point
(x,y), the six trigonometric functions of the angle are represented by following formulas:


\sin \theta = \frac{y}{\sqrt{x^(2)+y^(2)}} (1)


\cos \theta = \frac{x}{\sqrt{x^(2)+y^(2)}} (2)


\tan \theta = (\sin \theta)/(\cos \theta) = (y)/(x) (3)


\cot \theta = (1)/(\tan \theta) = (x)/(y) (4)


\sec \theta = (1)/(\cos \theta) = \frac{\sqrt{x^(2)+y^(2)}}{x} (5)


\csc \theta = (1)/(\sin \theta) = \frac{\sqrt{x^(2)+y^(2)}}{y} (6)

If we know that
x = 84 and
y = 13, then the values of the six trigonometric functions is:


\sin \theta = \frac{y}{\sqrt{x^(2)+y^(2)}}


\sin \theta = 0.153


\cos \theta = \frac{x}{\sqrt{x^(2)+y^(2)}}


\cos \theta = 0.988


\tan \theta = (y)/(x)


\tan \theta = 0.155


\cot \theta = (x)/(y)


\cot \theta = 6.462


\sec \theta = \frac{\sqrt{x^(2)+y^(2)}}{x}


\sec \theta = 1.012


\csc \theta = \frac{\sqrt{x^(2)+y^(2)}}{y}


\csc \theta = 6.538

No related questions found

Welcome to Qamnty — a place to ask, share, and grow together. Join our community and get real answers from real people.