asked 73.1k views
15 votes
Please help with this asappppppppll

Please help with this asappppppppll-example-1

2 Answers

5 votes

Answer:

(x-9)^2 + (y-9)^2 = 81

Explanation:

Explanation:Equation of a circle

( x - h )^2 + ( y - k )^2 = r^2

Your graph - the circle intersects the x-axis at (9 , -9)

- the circle intersects the y-axis at (9 , -9)

h = the number on the x axis intersected by the circle.

k = the number on the y axis intersected by the circle.

r = radius of the circle measured starting from the origin.

plug these in:

( x - h )^2 + ( y - k )^2 = r^2.

(x - 9)^2 + (y - 9)^2 = 9^2

(x-9)^2 + (y-9)^2 = 81

answered
User Mayuso
by
8.5k points
10 votes

We are given with a circle and we need to find the equation of the circle , but first let's recall that , the equation of a circle with radius 'r' and centre at (h,k) is given by
{\bf{(x-h)^(2)+(y-k)^(2)=r^(2)}}

Now , here as as the circle cuts the +ve x-axis at (9,0) . So , it's radius is 9 units or the 2nd way is to measure the distance from centre of the circle to the point where the circle cuts the graph , as the centre is at Origin , so here (h,k) = (0,0) .Which means that the centre is located at the point whose coordinates are (0,0) which is also known as origin . Now , finding the equation of the circle :-


{:\implies \quad \sf (x-0)^(2)+(y-0)^(2)=(9)^(2)}


{:\implies \quad \bf \therefore \quad \underline{\underline{x^(2)+y^(2)=81}}}

This is the required equation of Circle

answered
User Adam Magyar
by
8.7k points

Related questions

asked Jul 17, 2023 74.1k views
SourabhTech asked Jul 17, 2023
by SourabhTech
8.3k points
1 answer
4 votes
74.1k views
Welcome to Qamnty — a place to ask, share, and grow together. Join our community and get real answers from real people.