asked 130k views
3 votes
Hi, can you help me with problem D? I’m in high school calculus 1. Thank you!

Hi, can you help me with problem D? I’m in high school calculus 1. Thank you!-example-1
asked
User Aexyn
by
8.2k points

1 Answer

0 votes

Applying the next trigonometric identity:


\sin ^2\alpha+\cos ^2\alpha=1

to angle θ, and solving for cos(θ), we get:


\begin{gathered} \sin ^2\theta+\cos ^2\theta=1 \\ \text{ Substituting with }\sin ^{}\theta=1/3\colon \\ ((1)/(3))^2+\cos ^2\theta=1 \\ (1)/(9)+\cos ^2\theta=1 \\ \cos ^2\theta=1-(1)/(9) \\ \cos ^2\theta=(8)/(9) \\ \cos \theta=\sqrt[]{(8)/(9)} \\ \cos \theta=\frac{\sqrt[]{8}}{3} \\ \cos \theta=\frac{2\sqrt[]{2}}{3} \end{gathered}

The relation between the cosine and the secant of an angle is:


\begin{gathered} \sec \varphi=(1)/(\cos\varphi) \\ \text{ Substituting with }\sec \varphi=17/8\colon \\ (17)/(8)=(1)/(\cos\varphi) \\ ((17)/(8))^(-1)=((1)/(\cos\varphi))^(-1) \\ (8)/(17)=\cos \varphi \end{gathered}

Applying the before mentioned trigonometric identity to angle φ, we get:


\begin{gathered} \sin ^2\varphi+\cos ^2\varphi=1 \\ \text{ Substituting with cos}\varphi\text{ = 8/17}\colon \\ \sin ^2\varphi+((8)/(17))^2=1 \\ \sin ^2\varphi+(64)/(289)^{}=1 \\ \sin ^2\varphi=1-(64)/(289) \\ \sin ^2\varphi=(225)/(289) \\ \sin \varphi=\sqrt[]{(225)/(289)} \\ \sin \varphi=(15)/(17) \end{gathered}

Difference formula of cosine


\cos (\alpha-\beta)=\cos \alpha\cdot\cos \beta+\sin \alpha\cdot\sin \beta

Applying this formula to angles θ and φ, and substituting with the values found, we get:


\begin{gathered} \cos (\theta-\varphi)=\cos \theta\cdot\cos \varphi+\sin \theta\cdot\sin \varphi \\ \cos (\theta-\varphi)=\frac{2\sqrt[]{2}}{3}\cdot(8)/(17)+(1)/(3)\cdot(15)/(17) \\ \cos (\theta-\varphi)=\frac{16\sqrt[]{2}}{51}+(15)/(51) \\ \cos (\theta-\varphi)=\frac{16\sqrt[]{2}+15}{51} \end{gathered}

No related questions found

Welcome to Qamnty — a place to ask, share, and grow together. Join our community and get real answers from real people.