asked 116k views
4 votes
Marc sold 457 tickets for the school play. Studen tickets cost $2 and adult tickets cost $3. Marc's sales totaled $1161. How many adult tickets and how many student tickets did Marc sell? 210 adult, 247 student b. 247 adult, 210 student 215 adult, 242 student d. 242 adult, 215 student

1 Answer

3 votes

The given situation can be written as a system of equations. Based on the given information you have:

x + y = 457

2x + 3y = 1161

where x is the number of student tickets and y is the number of y tickets.

In order to determine the values of x and y, proceed as follow:

- multiply the first equation by -2:

(x + y = 457)(-2)

-2x - 2y = -914

- then, add the previous equation to the second equation of the system:

-2x - 2y = -914

2x + 3y = 1161

y = 247

- next, replace the previous value of y into the first equationof the system, and solve for x:

x + y = 457

x + 247 = 457

x = 457 - 247

x = 210

Hence, the number of student tickest sold was 210, and adult tickets sold was 247

answered
User Tarik Tutuncu
by
7.5k points
Welcome to Qamnty — a place to ask, share, and grow together. Join our community and get real answers from real people.