asked 12.4k views
2 votes
Referring to the figure, match the translation of quadrilateral ABCD to quadrilateral A'B'C'D' by using the vector (0,1) a. A'(6,1), B'(2,1), C'(1,-2), D'(-3,-2) b. A'(-5,-1), B'(-1,-1), C'(-2,-4), D'(-6,-4) c. A'(-4,3), B'(0,3), C'(-1,0), D'(-5,0) d. A'(-4,0), B'(1,0), C'(0,-3), D'(-4,-3)

Referring to the figure, match the translation of quadrilateral ABCD to quadrilateral-example-1

1 Answer

5 votes

To translate the quadrilateral using the given vector, we will add the vector coordinates to the coordinates of the vertices of the shape.

The vertices of ABCD have the following coordinates:


\begin{gathered} A\to(-4,2) \\ B\to(0,2) \\ C\to(-1,-1) \\ D\to(-5,-1) \end{gathered}

If we add the vector (0, 1) to the vertices, we have:


\begin{gathered} A^(\prime)\to(-4,2+1)=(-4,3) \\ B^(\prime)\to(0,2+1)=(0,3) \\ C^(\prime)\to(-1,-1+1)=(-1,0) \\ D^(\prime)\to(-5,-1+1)=(-5,0) \end{gathered}

Therefore, the correct option is OPTION C.

answered
User Maslak
by
7.7k points

No related questions found

Welcome to Qamnty — a place to ask, share, and grow together. Join our community and get real answers from real people.