asked 40.6k views
2 votes
22. Distribute (c +4)(3c2-C-5).

1 Answer

1 vote

We need to make the product of a binomial times a trinomial of the form:


(c+4)\cdot(3c^2-c-5)

So we use distributive roerty, making sure that we multiply each term of the first binomial times each term of the trinomial.

We start by multiplying c times each of the three terms in the trinomial expression, and after that we do the product of "4" times each of the three terms of the trinomial:


\begin{gathered} c\cdot(3c^2)-c^2-5c+4\cdot(3c^2)-4c-20 \\ 3c^3-c^2-5c+12c^2-4c-20 \end{gathered}

and to follow this, we combine the like terms that we have produced in the product. These are the terms in c-squared, and the terms in c:


3c^3+11c^2-9c-20

answered
User Jobukkit
by
8.1k points

Related questions

2 answers
5 votes
235k views
asked Nov 3, 2017 216k views
Lcapra asked Nov 3, 2017
by Lcapra
8.2k points
1 answer
2 votes
216k views
Welcome to Qamnty — a place to ask, share, and grow together. Join our community and get real answers from real people.