asked 226k views
3 votes
Given rectangle ABCD with vertices A(1,4), B(3,6), C(6, 3), and D(4,1), what is the area of ABCD? Leave your answer in simplified radical form.12 square units572 square units672 square units10 square units

Given rectangle ABCD with vertices A(1,4), B(3,6), C(6, 3), and D(4,1), what is the-example-1
asked
User Hett
by
8.0k points

1 Answer

5 votes

The distance formula between two points is :


d=\sqrt[]{(x_2-x_1)^2+(y_2-y_1)^2}

The distance between vertices A(1, 4) and B(3, 6) is :


\begin{gathered} d=\sqrt[]{(3-1)^2+(6-4)^2} \\ d=\sqrt[]{2^2+2^2} \\ d=\sqrt[]{4+4} \\ d=\sqrt[]{8} \\ d=2\sqrt[]{2} \end{gathered}

The distance between the vertices B(3, 6) and C(6, 3) is :


\begin{gathered} d=\sqrt[]{(3-6)^2+(6-3)^2} \\ d=\sqrt[]{(-3)^2+(3)^2} \\ d=\sqrt[]{9+9} \\ d=\sqrt[]{18} \\ d=3\sqrt[]{2} \end{gathered}

The area formula of a rectangle is length x width or AB x BC

The area will be :


\begin{gathered} A=2\sqrt[]{2}*3\sqrt[]{2} \\ A=6\sqrt[]{4} \\ A=6(2) \\ A=12 \end{gathered}

The answer is A. 12 square units

answered
User BrynJ
by
8.8k points
Welcome to Qamnty — a place to ask, share, and grow together. Join our community and get real answers from real people.