asked 183k views
4 votes
For the following equation determine the value of the missing entries reduce all fractions to lowest term note each column in the table represents an ordered pair. if multiple solutions exist you only need to identify one

For the following equation determine the value of the missing entries reduce all fractions-example-1
asked
User Deba
by
8.2k points

1 Answer

5 votes

Given:


8x-4y=18

To complete the table, let's substitute the values that are known and find the unknown.

a) y = 0


\begin{gathered} 8x-4*0=18 \\ 8x=18 \\ Dividing\text{ }both\text{ sides }by\text{ 8:} \\ (8x)/(8)=(18)/(8) \\ x=(18)/(8) \\ Dividing\text{ }the\text{ }numerator\text{ and }the\text{ }denominator\text{ }by\text{ 2:} \\ x=((18)/(2))/((8)/(2)) \\ x=(9)/(4) \end{gathered}

The first point is (9/4, 0).

b) x = 0


\begin{gathered} 8*0-4y=18 \\ -4y=18 \\ Dividing\text{ }the\text{ }sides\text{ }by\text{ -4:} \\ -(4y)/(-4)=(18)/(-4) \\ y=-(18)/(4) \\ Dividing\text{ }by\text{ }2: \\ y=-((18)/(2))/((4)/(2)) \\ y=-(9)/(2) \end{gathered}

The first point is (0, -9/2).

c) x = 1


\begin{gathered} 8*1-4y=18 \\ 8-4y=18 \\ Subtracting\text{ }8\text{ }from\text{ both }sides: \\ 8-4y-8=18-8 \\ -4y=10 \\ Dividing\text{ }the\text{ }sides\text{ }by\text{ }-4: \\ (-4y)/(-4)=(10)/(-4) \\ y=-(10)/(4) \\ Dividing\text{ }the\text{ }sides\text{ }by\text{ 2:} \\ y=-((10)/(2))/((4)/(2)) \\ y=-(5)/(2) \end{gathered}

The third point is (1, -5/2).

d) y = 3


\begin{gathered} 8x-4*3=18 \\ 8x-12=18 \\ Adding\text{ }12\text{ }to\text{ }both\text{ }sides: \\ 8x-12+12=18+12 \\ 8x=30 \\ Divind\text{ }by\text{ 8:} \\ (8x)/(8)=(30)/(8) \\ x=(30)/(8) \\ Divind\text{ }by\text{ 2: } \\ x=((30)/(2))/((8)/(2)) \\ x=(15)/(4) \end{gathered}

The fourth point is (15/4, 3).

Answer:

x 9/4 0 1 15/4

y 0 -9/2 -5/2 3

answered
User Shan Plourde
by
9.5k points

No related questions found

Welcome to Qamnty — a place to ask, share, and grow together. Join our community and get real answers from real people.