asked 221k views
2 votes
find all X-coordinates of points (x,y) on the curve y=(x-5)^6/(x-4)^5 where the tangent line is horizontal

find all X-coordinates of points (x,y) on the curve y=(x-5)^6/(x-4)^5 where the tangent-example-1

1 Answer

5 votes

Given:


y=((x-5)^6)/((x-4)^5)

To Determine: Where the tangent line is horizontal

Solution

Please note where the tangent line is horizontal is when the derivative is equal to zero

Determine the derivative of the function using quotient rule


\begin{gathered} Quotient\text{ rule} \\ If,y=(u)/(v),then,(dy)/(dx)=(v(du)/(dx)-u(dv)/(dx))/(v^2) \end{gathered}
\begin{gathered} Given \\ y=((x-5)^6)/((x-4)^5) \\ u=(x-5)^6 \\ v=(x-4)^5 \end{gathered}
\begin{gathered} u=(x-5)^6 \\ (du)/(dx)=6(x-5)^5 \\ v=(x-4)^5 \\ (dv)/(dx)=5(x-4)^4 \end{gathered}
\begin{gathered} Therefore \\ (dy)/(dx)=((x-4)^5*6(x-5)^5-(x-5)^6*5(x-4)^4)/(((x-4)^5)^2) \end{gathered}
(dy)/(dx)=((x-4)^4(x-5)^5((6(x-4)-5(x-5)))/((x-4)^(10))
\begin{gathered} (dy)/(dx)=(\left(x-4\right)^4\left(x-5\right)^5\left(x+1\right))/(\left(x-4\right)^(10)) \\ (dy)/(dx)=(\left(x-4\right)^4\left(x-5\right)^5\left(x+1\right))/(\left(x-4\right)^4\left(x-4\right)^6) \\ (dy)/(dx)=(\left(x-5\right)^5\left(x+1\right))/(\left(x-4\right)^6) \end{gathered}

Equate the derivative to zero


\begin{gathered} (\left(x-5\right)^5\left(x+1\right))/(\left(x-4\right)^6)=0 \\ \left(x-5\right)^5\left(x+1\right)=0 \\ (x-5)^5=0,or,x+1=0 \\ x-5=0,or,x+1=0 \\ x=5,or,x=-1 \end{gathered}
\begin{gathered} when,x=5 \\ y=((5-5)^6)/((5-4)^5)=(0^6)/(1^5)=(0)/(1)=0 \end{gathered}
\begin{gathered} When,x=-1 \\ y=((-1-5)^6)/((-1-4)^5)=((-6)^6)/((-5)^5)=(46656)/(-3125)=-14.92992 \end{gathered}

Hence

(5,0) and (-1,-14.92992)

x=(-1, 5)

answered
User Dane
by
9.1k points

No related questions found

Welcome to Qamnty — a place to ask, share, and grow together. Join our community and get real answers from real people.