asked 69.8k views
4 votes
Please help!!! I really need this!!! It's piecewise functions......

Please help!!! I really need this!!! It's piecewise functions......-example-1

1 Answer

5 votes

well, let's take a peek at the graph, hmmm it has a straight line from the origin to (5,10), and then another straight line from (5,10) to (10,5) and then another one from there up to (20,5).

well, let's simply get the equations for each of those lines then


(\stackrel{x_1}{0}~,~\stackrel{y_1}{0})\qquad (\stackrel{x_2}{5}~,~\stackrel{y_2}{10}) ~\hfill \stackrel{slope}{m}\implies \cfrac{\stackrel{rise} {\stackrel{y_2}{10}-\stackrel{y1}{0}}}{\underset{run} {\underset{x_2}{5}-\underset{x_1}{0}}} \implies 2 \\\\\\ \begin{array}c \cline{1-1} \textit{point-slope form}\\ \cline{1-1} \\ y-y_1=m(x-x_1) \\\\ \cline{1-1} \end{array}\implies y-\stackrel{y_1}{0}=\stackrel{m}{2}(x-\stackrel{x_1}{0})\implies \boxed{y = 2x} \\\\[-0.35em] ~\dotfill


(\stackrel{x_1}{5}~,~\stackrel{y_1}{10})\qquad (\stackrel{x_2}{10}~,~\stackrel{y_2}{5}) ~\hfill \stackrel{slope}{m}\implies \cfrac{\stackrel{rise} {\stackrel{y_2}{5}-\stackrel{y1}{10}}}{\underset{run} {\underset{x_2}{10}-\underset{x_1}{5}}} \implies \cfrac{ -5 }{ 5 }\implies -1


\begin{array}ll \cline{1-1} \textit{point-slope form}\\ \cline{1-1} \\ y-y_1=m(x-x_1) \\\\ \cline{1-1} \end{array}\implies y-\stackrel{y_1}{10}=\stackrel{m}{-1}(x-\stackrel{x_1}{5}) \\\\\\ y-10=-x+5\implies \boxed{y=-x+15} \\\\[-0.35em] ~\dotfill


(\stackrel{x_1}{10}~,~\stackrel{y_1}{5})\qquad (\stackrel{x_2}{20}~,~\stackrel{y_2}{5}) ~\hfill \stackrel{slope}{m}\implies \cfrac{\stackrel{rise} {\stackrel{y_2}{5}-\stackrel{y1}{5}}}{\underset{run} {\underset{x_2}{20}-\underset{x_1}{10}}} \implies \cfrac{ 0 }{ 10 }\implies 0 \\\\\\ \begin{array}c \cline{1-1} \textit{point-slope form}\\ \cline{1-1} \\ y-y_1=m(x-x_1) \\\\ \cline{1-1} \end{array}\implies y-\stackrel{y_1}{5}=\stackrel{m}{0}(x-\stackrel{x_1}{10})\implies y-5=0\implies \boxed{y=5}

so then hmmm let's use those, we know how f(x) is moving now, so


\stackrel{y}{f(x)}= \begin{cases} 2x&x\geqslant 0\\\\ -x+15&x\leqslant 10\\\\ 5&x\leqslant 20 \end{cases}

answered
User ScheuNZ
by
8.2k points

No related questions found