Answer:
x²+5x-14=0
per factorization
x²+7x-2x+14=0
x(x+7)-2(x+7)=0
(x+7)(x-2)=0
x+7=0⇔x=-7
x-2=0⇔x=2
or with the discriminant
b²-4ac =5²-4(1*-14)=81
Δ=81
Δ is strictly positive, the equation x²+5x−14=0 admits two solutions
(-b-√Δ)/2a = (-5-9)/2 = 14/2=-7
(-b+√Δ)/2a =(-5+9)/2 =4/2 = 2
S{-7,2}