Answer:
x = 4"
V max = 1024 sq inch
Explanation:
Let the length of the cut corner = x"
then, the length of the box = (24 - 2x)"
width of the box = (24 - 2x)"
height of the box = x"
Volume = length × width × height
= (24 - 2x)(24 - 2x)(x)
= (576 - 96x + 4x²)(x)
= 4x³ - 96x² + 576x
Volume max if the derivative = 0






(which is not available, because the length/width of the box = (24 - 2x)" → if x = 12" meaning length/width = 0)
∴ x = 4"
Volume = 4x³ - 96x² + 576x
Vol max = 4(4)³ - 96(4)² + 576(4)
= 1024 sq inch