asked 37.3k views
1 vote
Find f'(x) and f"(x) where f(x) = x^4e^x

asked
User Spen D
by
8.5k points

1 Answer

6 votes

Answer:

f'(x) =
{x^3}{e^x}(x + 4)

f''(x) =
2{x^2}{e^x}(2x^2 + 4x + 12)

Explanation:

f(x) =
x^4 * e^x

Use the product rule:


(d)/(dx) (f(x) * g(x)) = f(x) * g'(x)+g(x) * f'(x))


x^4 * (d)/(dx) e^x+e^x * (d)/(dx) x^4

f'(x) =
x^4 * e^x + e^x * 4x^3

Use the sum rule:


(d)/(dx) (f(x) * g(x)) = f'(x) + g'(x)


(d)/(dx) (x^4 * e^x + e^x * 4x^3) = (d)/(dx) (x^4 * e^x) + (d)/(dx) (e^x * 4x^3)

Use the product rule for each part:


(d)/(dx) (f(x) * g(x)) = f(x) * g'(x)+g(x) * f'(x))


(d)/(dx) (x^4 * e^x) = x^4 * (d)/(dx) e^x + e^x * (d)/(dx) x^4

f''(x) (part one) =
x^4 * e^x + e^x * 4x^3


(d)/(dx) (x^4 * e^x) = x^4 * (d)/(dx) e^x + e^x * (d)/(dx) 4x^3

f''(x) (part two) =
x^4 * e^x + e^x * 12x^2

f''(x) =
x^4 * e^x + e^x * 4x^3 + x^4 * e^x + e^x * 12x^2

f''(x) =
{x^2}{e^x}(2x^2 + 4x + 12)

f''(x) =
2{x^2}{e^x}(x^2 + 2x + 6)

So:

f'(x) =
x^4 * e^x + e^x * 4x^3

f''(x) = 2{x^2}{e^x}(x^2 + 2x + 6)

answered
User Yavor Atov
by
9.2k points

No related questions found

Welcome to Qamnty — a place to ask, share, and grow together. Join our community and get real answers from real people.