asked 9.2k views
0 votes
Solve the inequality. (Enter your answer using interval notation.)
2x^3 − 18x < x^2 − 9

asked
User Matvore
by
7.9k points

1 Answer

0 votes

Answer:

Hi,

Explanation:


2x^3-18x < x^2-9\\\\2x^3-x^2-18x+9 < 0\\\\x^2(2x-1)-9(2x-1) < 0\\\\(2x-1)(x^2-9) < 0\\\\(2x-1)(x+3)(x-3) < 0\\


\begin{array}cccccccx&amp;&amp;-3&amp;&amp;-(1)/(2) &amp;&amp;3&amp;\\---&amp;---&amp;---&amp;---&amp;---&amp;---&amp;---&amp;---\\2x-1&amp;-&amp;-&amp;-&amp;0&amp;+&amp;+&amp;+\\x-3&amp;-&amp;0&amp;+&amp;+&amp;+&amp;+&amp;+\\x+3&amp;-&amp;-&amp;-&amp;-&amp;-&amp;0&amp;+\\---&amp;---&amp;---&amp;---&amp;---&amp;---&amp;---&amp;---\\f(x)&amp;-&amp;0&amp;+&amp;0&amp;-&amp;0&amp;+\\\end {array}\\\\\\x\in ]-\infty, -3[\ \cup\ ](1)/(2) , 3 [

answered
User Len Greski
by
7.4k points

No related questions found

Welcome to Qamnty — a place to ask, share, and grow together. Join our community and get real answers from real people.