Answer: The 91st term is -1705
Explanation:
The common difference appears to be -19
5 + d = -14, solve for d ; d = -14 - 5 = -19
-14 + d = -33, d = -33 + 14 = -19
a(sub n+1) = a(sub n) + d
a(sub n) = a(sub 1) + (n - 1)*d
a(sub n) = 5 + (n - 1)*(-19)
so a(sub 91) represents the 91st term of the arithmetic sequence.
a(sub 91) = 5 + (91 - 1)*(-19)
a(sub 91) = -1705
The 91st term is -1705
From MysticAlanCheng