Answer:
21
Explanation:
Given function:

To find the area under the graph of f over the interval [-2, 3], we need to split the interval [-2, 3] into two parts since the function f(x) is defined differently in these two subintervals.
To find the area under a curve over the interval [a, b], calculate the definite integral.
![\boxed{\begin{minipage}{8.5 cm}\underline{De\:\!finite integration}\\\\$\displaystyle \int^b_a \text{f}(x)\; \text{d}x=\left[\text{g}(x)\right]^b_a=\text{g}(b)-\text{g}(a)$\\\\\\where $a$ is the lower limit and $b$ is the upper limit.\\\end{minipage}}](https://img.qammunity.org/2024/formulas/mathematics/high-school/3kvckznafv7jge2ooihh7j58mb0pyx2i1x.png)
Therefore, the area under the graph of f over the interval [-2, 3] is given by:

Evaluate the integral, using the following rules for integration:


Therefore:
![A=\left[(x^3)/(3)+2x\right]^1_(-2)+\left[(3x^2)/(2)\right]^3_1](https://img.qammunity.org/2024/formulas/mathematics/high-school/jf98i9ub7skg015wgjj8e9l6hkpjls5zu6.png)
![A=\left[\left(((1)^3)/(3)+2(1)\right)-\left(((-2)^3)/(3)+2(-2)\right)\right]+\left[\left((3(3)^2)/(2)\right)-\left((3(1)^2)/(2)\right)\right]](https://img.qammunity.org/2024/formulas/mathematics/high-school/655hnfl5w7wfmjk3a6rb4wg9rcmh700797.png)
![A=\left[\left((1)/(3)+2\right)-\left((-8)/(3)-4\right)\right]+\left[\left((27)/(2)\right)-\left((3)/(2)\right)\right]](https://img.qammunity.org/2024/formulas/mathematics/high-school/xsfphd2iybassjfhavnb7skha0f9smahui.png)




Therefore, the total area under the graph of f(x) over the interval [-2, 3] is 21 square units.