asked 82.7k views
2 votes
Find the area under the graph of \( f \) over the interval \( [-2,3] \). \[ f(x)=\left\{\begin{array}{ll} x^{2}+2 & x \leq 1 \\ 3 x & x>1 \end{array}\right. \] The area is . (Simplify your answer.)

\

1 Answer

2 votes

Answer:

21

Explanation:

Given function:


f(x)=\begin{cases} x^(2)+2 & x \leq 1 \\ 3 x & x > 1 \end{cases}

To find the area under the graph of f over the interval [-2, 3], we need to split the interval [-2, 3] into two parts since the function f(x) is defined differently in these two subintervals.

To find the area under a curve over the interval [a, b], calculate the definite integral.


\boxed{\begin{minipage}{8.5 cm}\underline{De\:\!finite integration}\\\\$\displaystyle \int^b_a \text{f}(x)\; \text{d}x=\left[\text{g}(x)\right]^b_a=\text{g}(b)-\text{g}(a)$\\\\\\where $a$ is the lower limit and $b$ is the upper limit.\\\end{minipage}}

Therefore, the area under the graph of f over the interval [-2, 3] is given by:


\displaystyle A=\int^1_(-2)(x^2+2)\; \text{d}x+\int^3_1 3x\; \text{d}x

Evaluate the integral, using the following rules for integration:


\boxed{\begin{minipage}{4 cm}\underline{Integrating $x^n$}\\\\$\displaystyle \int x^n\:\text{d}x=(x^(n+1))/(n+1)+\text{C}$\end{minipage}}


\boxed{\begin{minipage}{5.1 cm}\underline{Integrating a constant}\\\\$\displaystyle \int n\:\text{d}x=nx+\text{C}$\\\\(where $n$ is any constant value) \end{minipage}}

Therefore:


A=\left[(x^3)/(3)+2x\right]^1_(-2)+\left[(3x^2)/(2)\right]^3_1


A=\left[\left(((1)^3)/(3)+2(1)\right)-\left(((-2)^3)/(3)+2(-2)\right)\right]+\left[\left((3(3)^2)/(2)\right)-\left((3(1)^2)/(2)\right)\right]


A=\left[\left((1)/(3)+2\right)-\left((-8)/(3)-4\right)\right]+\left[\left((27)/(2)\right)-\left((3)/(2)\right)\right]


A=(7)/(3)+(20)/(3)+(27)/(2)-(3)/(2)


A=(27)/(3)+(24)/(2)


A=9+12


A=21

Therefore, the total area under the graph of f(x) over the interval [-2, 3] is 21 square units.

Find the area under the graph of \( f \) over the interval \( [-2,3] \). \[ f(x)=\left-example-1
Welcome to Qamnty — a place to ask, share, and grow together. Join our community and get real answers from real people.