asked 183k views
3 votes
A particle that moves along a straight line has velocity v(t)=t^2 e^−2t

meters per second after t seconds. How many meters will it travel during the first t seconds (from time =0 to time =t) ?

asked
User Dolcens
by
8.5k points

1 Answer

5 votes

Answer:


\displaystyle -(1)/(2)\, t^(2) \, e^(-2t) - (1)/(2) t\, e^(-2 t) - (1)/(4) e^(-2 t) + (1)/(4).

Step-by-step explanation:

Distance travelled can be found by integrating speed, which is the absolute value (magnitude) of velocity. Since the value of velocity in this question is non-negative over the given range, the expression for speed would be the same as that for velocity:
v(t) = t^(2)\, e^(-2 t).

The distance travelled during the given time would be equal to the definite integral:


\displaystyle \int \limits_(0)^(t) t^(2) e^(-2 t)\, dt.

To find the value of this definite integral, start by integrating
v(t) = t^(2)\, e^(-2 t) indefinitely using integration by parts.

In integration by parts:


\displaystyle \int u\, v^(\prime) \, d t = u\, v - \int u^(\prime)\, v\, d t,

Where:


  • u and
    v are two functions of
    t, and

  • u^(\prime) and
    v^(\prime) denote the first derivative of
    u and
    v with respect to
    t.

Using the LIATE rule, set
u = t^(2) (algebraic) and
v^(\prime) = e^(-2 t) (exponential,) such that
u^(\prime) = 2\, t and
v = (-1/2)\, e^(-2 t) (the constant of integration is omitted here.) Hence:


\begin{aligned} \int t^(2) \, e^(-2 t)\, dt &= t^(2)\, \left(-(1)/(2)\, e^(-2 t)\right) - \int 2\, t\left(-(1)/(2)\, e^(-2 t)\right)\, d t \\ &= -(1)/(2)\, t^(2)\, e^(-2 t) + \int t\, e^(-2 t)\, d t\end{aligned}.

Similarly, apply integration by parts to integrate
t\, e^(-2 t). Set
u = t (algebraic) and
v^(\prime) = e^(-2 t) (exponential,) such that
u^(\prime) = 1 and
v = (-1/2)\, e^(-2 t). Using integration by parts:


\begin{aligned} \int t \, e^(-2 t)\, dt &= t \, \left(-(1)/(2)\, e^(-2 t)\right) - \int \left(-(1)/(2)\, e^(-2 t)\right)\, d t \\ &= -(1)/(2)\, t\, e^(-2 t) +(1)/(2)\int e^(-2 t)\, d t \\ &= -(1)/(2)\, t \, e^(-2 t) + (1)/(2)\left(-(1)/(2)\, e^(-2 t)\right) + C \\ &= -(1)/(2)\, t \, e^(-2 t) -(1)/(4)\, e^(-2 t) + C\end{aligned},

Where
C is a constant of integration.

Substitute this result into the previous one:


\begin{aligned} \int t^(2) \, e^(-2 t)\, dt &= t^(2)\, \left(-(1)/(2)\, e^(-2 t)\right) - \int 2\, t\left(-(1)/(2)\, e^(-2 t)\right)\, d t \\ &= -(1)/(2)\, t^(2)\, e^(-2 t) + \int t\, e^(-2 t)\, d t \\ &= -(1)/(2)\, t^(2)\, e^(-2 t) + \left( -(1)/(2)\, t \, e^(-2 t) -(1)/(4)\, e^(-2 t) + C\right) \\ &= -(1)/(2)\, t^(2)\, e^(-2 t) -(1)/(2)\, t \, e^(-2 t) -(1)/(4)\, e^(-2 t) + C\end{aligned}.

Evaluate the definite integral for displacement using this result:


\begin{aligned} &\int \limits_(0)^(t) t^(2) e^(-2 t)\, dt\\ =\; & \left[-(1)/(2)\, t^(2)\, e^(-2 t) -(1)/(2)\, t \, e^(-2 t) -(1)/(4)\, e^(-2 t)\right]^(t)_(0) \\ =\; & \left(-(1)/(2)\, t^(2)\, e^(-2 t) -(1)/(2)\, t \, e^(-2 t) -(1)/(4)\, e^(-2 t)\right) - \left(-(1)/(4)\right) \end{aligned}.

answered
User Chrsan
by
8.3k points