asked 233k views
1 vote
Let $g(x)=\sqrt[3]{\frac{x+3}{4}}$. Find the value of $x$ such that $g(2x)=(g(x))^2$.

1 Answer

4 votes

Answer:


x = -1


x = 3

Explanation:

Given:


g(x)=\sqrt[3]{(x+3)/(4)}

To find the value of x such that g(2x) = (g(x))², substitute x = 2x into g(x), then equate it to the square of function g(x):


\begin{aligned}g(2x)&=(g(x))^2\\\\\sqrt[3]{(2x+3)/(4)}&=\left(\sqrt[3]{(x+3)/(4)}\right)^2\end{aligned}


\textsf{Apply the exponent rule:} \quad \left(\sqrt[n]{a}\right)^m=a^{(m)/(n)}


\left((2x+3)/(4)\right)^(1)/(3)}=\left((x+3)/(4)\right)^(2)/(3)}

Cube both sides of the equation:


\left(\left((2x+3)/(4)\right)^(1)/(3)}\right)^3=\left(\left((x+3)/(4)\right)^(2)/(3)}\right)^3


\textsf{Apply the exponent rule:} \quad (a^b)^c=a^(bc)


\begin{aligned}\left((2x+3)/(4)\right)^(1)&=\left((x+3)/(4)\right)^(2)\\\\(2x+3)/(4)&=\left((x+3)/(4)\right)^(2)\end{aligned}


\textsf{Apply the exponent rule:} \quad \left((a)/(b)\right)^c=(a^c)/(b^c)


\begin{aligned}(2x+3)/(4)&=((x+3)^2)/(4^2)\\\\(2x+3)/(4)&=((x+3)^2)/(16)\end{aligned}

Cross multiply and expand:


\begin{aligned}16(2x+3)&=4(x+3)^2\\\\32x+48&=4(x^2+6x+9)\end{aligned}

Divide both sides by 4:


8x+12=x^2+6x+9

Rearrange to ax² + bx + c = 0 form:


\begin{aligned}8x+12-8x-12&=x^2+6x+9-8x-12\\\\0&=x^2-2x-3\\\\x^2-2x-3&=0\end{aligned}

Factor and solve for x:


\begin{aligned}x^2-3x+x-3&=0\\\\x(x-3)+1(x-3)&=0\\\\(x+1)(x-3)&=0\\\\x+1&=0 \implies x=-1\\x-3&=0 \implies x+3\end{aligned}

Therefore, the two values of x are x = -1 and x = 3.

answered
User Hmuelner
by
8.6k points
Welcome to Qamnty — a place to ask, share, and grow together. Join our community and get real answers from real people.