asked 92.8k views
0 votes
In an examination 60% of examinees passed in English, 50% passed in mathematics. If 10% of examinees are failed in both subjects and 35 students are successful in the both subjects. Find the number of students passed in English only. ​

asked
User Thao Ngo
by
8.4k points

1 Answer

7 votes

Answer:

175 students passed in English only.

Explanation:

To find the number of students who passed in English only, we need to subtract the number of students who passed in both subjects from the total number of students who passed in English.

Number of students passed in English only = Number of students passed in English - Number of students passed in both subjects

Number of students passed in English only = 0.6x - 35

Now, let's solve for the value of x.

Since we know that 0.6x represents the number of students passed in English, and 0.5x represents the number of students passed in mathematics, we can set up the following equation:

0.6x - 35 = 0.5x

0.6x - 0.5x = 35

0.1x = 35

x = 35 / 0.1

x = 350

Therefore, the total number of examinees is 350.

Now, substitute the value of x back into the equation for the number of students passed in English only:

Number of students passed in English only = 0.6x - 35

Number of students passed in English only = 0.6 * 350 - 35

Number of students passed in English only = 210 - 35

Number of students passed in English only = 175

Hence, 175 students passed in English only.

answered
User Natsu
by
8.3k points
Welcome to Qamnty — a place to ask, share, and grow together. Join our community and get real answers from real people.