Answer:

Explanation:
Differentiate the following function using the product rule.

I will be using the following rules of differentiation:
![\boxed{\left\begin{array}{ccc}\text{\underline{The Product Rule:}}\\(d)/(dx)[f(x)g(x)]= f(x)g'(x)+g(x)f'(x)\end{array}\right } \\ \\\\ \boxed{\left\begin{array}{ccc}\text{\underline{The Power Rule:}}\\(d)/(dx)[x^n]= nx^(n-1)\end{array}\right } \\\\\\ \boxed{\left\begin{array}{ccc}\text{\underline{The Constant Rule:}}\\(d)/(dx)[a]= 0\end{array}\right }](https://img.qammunity.org/2024/formulas/mathematics/college/mov9swumti7r2ajttktrwdqy3as839vhu2.png)

(a) Applying the product rule as is:
![y'=(7-x^2)(d)/(dx) [x^3-4x+3]+(x^3-4x+3)(d)/(dx)[7-x^2]\\\\\\\\ \Longrightarrow y'=(7-x^2)(3x^2-4)+(x^3-4x+3)(-2x)\\\\\\\\\Longrightarrow y'=-3x^4+25x^2-28-2x^4+8x^2-6x\\\\\\\\\therefore \boxed{\boxed{y'=-5x^4+33x^2-6x-28}}](https://img.qammunity.org/2024/formulas/mathematics/college/lri2qbcwgclex09y3vbra8mrru6jlk5x25.png)
(b) Multiplying the factors to produce a sum of simpler terms:

Now differentiating, notice we can just apply the power rule to each term
![y'=(d)/(dx)[ -x^5+11x^3-3x^2-28x+21]\\\\\\\\\therefore \boxed{\boxed{y'=-5x^4+33x^2-6x-28}}](https://img.qammunity.org/2024/formulas/mathematics/college/dw309prcwzhu25aydmajptngf23656ipu6.png)
Notice how we get the same answer using different methods. As you get more familiar with derivatives you'll soon be able to recognize easier methods to derive functions.