asked 151k views
2 votes
From first principle,find the derivative of
\tt {e}^(3x - 5)
Help!!​

asked
User Kukunin
by
8.3k points

1 Answer

4 votes

Answer:


\frac{\text{d}y}{\text{d}x}=3e^(3x-5)

Explanation:

Differentiating from First Principles is a technique to find an algebraic expression for the gradient at a particular point on the curve.


\boxed{\begin{minipage}{5.6 cm}\underline{Differentiating from First Principles}\\\\\\$\text{f}\:'(x)=\displaystyle \lim_(h \to 0) \left[\frac{\text{f}(x+h)-\text{f}(x)}{(x+h)-x}\right]$\\\\\end{minipage}}

The point (x + h, f(x + h)) is a small distance along the curve from (x, f(x)).

As h gets smaller, the distance between the two points gets smaller.

The closer the points, the closer the line joining them will be to the tangent line.

To differentiate y = e^(3x-5) using first principles, substitute f(x + h) and f(x) into the formula:


\displaystyle \frac{\text{d}y}{\text{d}x}=\lim_(h \to 0) \left[(e^(3(x+h)-5)-e^(3x-5))/((x+h)-x)\right]

Simplify the numerator:


\displaystyle \frac{\text{d}y}{\text{d}x}=\lim_(h \to 0) \left[(e^(3x+3h-5)-e^(3x-5))/((x+h)-x)\right]


\displaystyle \frac{\text{d}y}{\text{d}x}=\lim_(h \to 0) \left[(e^(3x-5)e^(3h)-e^(3x-5))/(h)\right]


\displaystyle \frac{\text{d}y}{\text{d}x}=\lim_(h \to 0) \left[(e^(3x-5)(e^(3h)-1))/(h)\right]

Apply the Product Law for Limits, which states that the limit of a product of functions equals the product of the limit of each function:


\displaystyle \frac{\text{d}y}{\text{d}x}=\lim_(h \to 0)\left[e^(3x-5)\right] \cdot \lim_(h \to 0) \left[((e^(3h)-1))/(h)\right]

Since the first function does not contain h, it is not affected by the limit:


\displaystyle \frac{\text{d}y}{\text{d}x}=e^(3x-5)\cdot \lim_(h \to 0) \left[((e^(3h)-1))/(h)\right]

Transform the numerator of the second function.


\textsf{Let\;\;$e^(3h)-1=n \implies e^(3h)=n+1$}


\textsf{You will notice that as\;\;$h \to 0, \;e^(3h) \to 1$,\;so\;\;$n \to 0$.}

Take the natural log of both sides and rearrange to isolate h:


\ln e^(3h)=\ln(n+1)


3h=\ln(n+1)


h=(1)/(3)\ln(n+1)

Therefore:


\displaystyle \frac{\text{d}y}{\text{d}x}=e^(3x-5)\cdot \lim_(n \to 0) \left[(n)/((1)/(3)\ln(n+1))\right]


\displaystyle \frac{\text{d}y}{\text{d}x}=e^(3x-5)\cdot \lim_(n \to 0) \left[(3n)/(\ln(n+1))\right]

Rewrite the fraction as 1 divided by the reciprocal of the fraction:


\displaystyle \frac{\text{d}y}{\text{d}x}=e^(3x-5)\cdot \lim_(n \to 0) \left[(1)/((\ln(n+1))/(3n))\right]


\displaystyle \frac{\text{d}y}{\text{d}x}=e^(3x-5)\cdot \lim_(n \to 0) \left[(1)/((1)/(3n)\ln(n+1))\right]


\displaystyle \frac{\text{d}y}{\text{d}x}=e^(3x-5)\cdot \lim_(n \to 0) \left[(3)/((1)/(n)\ln(n+1))\right]

Apply the Log Power Law:


\displaystyle \frac{\text{d}y}{\text{d}x}=e^(3x-5)\cdot \lim_(n \to 0) \left[\frac{3}{\ln(n+1)^{(1)/(n)}}\right]

Apply the Quotient Law for Limits, which states that the limit of a quotient of functions equals the quotient of the limit of each function:


\frac{\text{d}y}{\text{d}x}=e^(3x-5)\cdot \left[\frac{\displaystyle\lim_(n \to 0)3}{\displaystyle\lim_(n \to 0)\ln(n+1)^{(1)/(n)}}\right]

Therefore, the numerator is a constant:


\frac{\text{d}y}{\text{d}x}=e^(3x-5)\cdot \left[\frac{3}{\displaystyle\lim_(n \to 0)\ln(n+1)^{(1)/(n)}}\right]

The limit of a function is the function of the limit.

Move the limit inside and take the natural log of that limit:


\frac{\text{d}y}{\text{d}x}=e^(3x-5)\cdot \left[\frac{3}{\displaystyle \ln\left(\lim_(n \to 0)(n+1)^{(1)/(n)}\right)}\right]

The definition of e is:


\boxed{e=\lim_(n \to 0)(n+1)^{(1)/(n)}}

Therefore:


\frac{\text{d}y}{\text{d}x}=e^(3x-5)\cdot \left[(3)/(\displaystyle \ln\left(e\right))\right]

As ln(e) = 1, then:


\frac{\text{d}y}{\text{d}x}=e^(3x-5)\cdot \left[(3)/(1)\right]


\frac{\text{d}y}{\text{d}x}=e^(3x-5)\cdot 3


\frac{\text{d}y}{\text{d}x}=3e^(3x-5)

answered
User Lunatix
by
7.3k points

No related questions found

Welcome to Qamnty — a place to ask, share, and grow together. Join our community and get real answers from real people.