Answer:

Explanation:
Differentiating from First Principles is a technique to find an algebraic expression for the gradient at a particular point on the curve.
![\boxed{\begin{minipage}{5.6 cm}\underline{Differentiating from First Principles}\\\\\\$\text{f}\:'(x)=\displaystyle \lim_(h \to 0) \left[\frac{\text{f}(x+h)-\text{f}(x)}{(x+h)-x}\right]$\\\\\end{minipage}}](https://img.qammunity.org/2024/formulas/mathematics/college/j5zlh0qcsbojf1fmop2flnegkno812ohio.png)
The point (x + h, f(x + h)) is a small distance along the curve from (x, f(x)).
As h gets smaller, the distance between the two points gets smaller.
The closer the points, the closer the line joining them will be to the tangent line.
To differentiate y = e^(3x-5) using first principles, substitute f(x + h) and f(x) into the formula:
![\displaystyle \frac{\text{d}y}{\text{d}x}=\lim_(h \to 0) \left[(e^(3(x+h)-5)-e^(3x-5))/((x+h)-x)\right]](https://img.qammunity.org/2024/formulas/mathematics/high-school/ri0tkagoaz2k2765w3043kn2fbb6htb24v.png)
Simplify the numerator:
![\displaystyle \frac{\text{d}y}{\text{d}x}=\lim_(h \to 0) \left[(e^(3x+3h-5)-e^(3x-5))/((x+h)-x)\right]](https://img.qammunity.org/2024/formulas/mathematics/high-school/ftpwffusdywpp5vi4g9abo8lmd0nbzbump.png)
![\displaystyle \frac{\text{d}y}{\text{d}x}=\lim_(h \to 0) \left[(e^(3x-5)e^(3h)-e^(3x-5))/(h)\right]](https://img.qammunity.org/2024/formulas/mathematics/high-school/brvqtvp61uvx7mvln26vjl1hzgb0n6ltq9.png)
![\displaystyle \frac{\text{d}y}{\text{d}x}=\lim_(h \to 0) \left[(e^(3x-5)(e^(3h)-1))/(h)\right]](https://img.qammunity.org/2024/formulas/mathematics/high-school/3uo530de89ezvrvjx41xw8m34hhpms8tpw.png)
Apply the Product Law for Limits, which states that the limit of a product of functions equals the product of the limit of each function:
![\displaystyle \frac{\text{d}y}{\text{d}x}=\lim_(h \to 0)\left[e^(3x-5)\right] \cdot \lim_(h \to 0) \left[((e^(3h)-1))/(h)\right]](https://img.qammunity.org/2024/formulas/mathematics/high-school/lbn5hu53ahzdihpnv2t1qy0qivqd61s1h2.png)
Since the first function does not contain h, it is not affected by the limit:
![\displaystyle \frac{\text{d}y}{\text{d}x}=e^(3x-5)\cdot \lim_(h \to 0) \left[((e^(3h)-1))/(h)\right]](https://img.qammunity.org/2024/formulas/mathematics/high-school/s0d5y1yds44qzy06cyc6dioaklugs94qzx.png)
Transform the numerator of the second function.


Take the natural log of both sides and rearrange to isolate h:



Therefore:
![\displaystyle \frac{\text{d}y}{\text{d}x}=e^(3x-5)\cdot \lim_(n \to 0) \left[(n)/((1)/(3)\ln(n+1))\right]](https://img.qammunity.org/2024/formulas/mathematics/high-school/7zrskjvg7bxvq7u6eyjmu9sgqk19hjhbnx.png)
![\displaystyle \frac{\text{d}y}{\text{d}x}=e^(3x-5)\cdot \lim_(n \to 0) \left[(3n)/(\ln(n+1))\right]](https://img.qammunity.org/2024/formulas/mathematics/high-school/2pqi29db9upn2ysy8002nku2a4ik1yml3h.png)
Rewrite the fraction as 1 divided by the reciprocal of the fraction:
![\displaystyle \frac{\text{d}y}{\text{d}x}=e^(3x-5)\cdot \lim_(n \to 0) \left[(1)/((\ln(n+1))/(3n))\right]](https://img.qammunity.org/2024/formulas/mathematics/high-school/t2jeraw2g1cpmxs2kjphyuy83mit5xovrk.png)
![\displaystyle \frac{\text{d}y}{\text{d}x}=e^(3x-5)\cdot \lim_(n \to 0) \left[(1)/((1)/(3n)\ln(n+1))\right]](https://img.qammunity.org/2024/formulas/mathematics/high-school/z6xu06b4aqwjxsga5ya2p62erhjtocm0lb.png)
![\displaystyle \frac{\text{d}y}{\text{d}x}=e^(3x-5)\cdot \lim_(n \to 0) \left[(3)/((1)/(n)\ln(n+1))\right]](https://img.qammunity.org/2024/formulas/mathematics/high-school/9zy2cwbexbx0tkmc17kp4qhoo4jakz4b50.png)
Apply the Log Power Law:
![\displaystyle \frac{\text{d}y}{\text{d}x}=e^(3x-5)\cdot \lim_(n \to 0) \left[\frac{3}{\ln(n+1)^{(1)/(n)}}\right]](https://img.qammunity.org/2024/formulas/mathematics/high-school/tz9pz8hwzxpafj59r4fpi6phixxbm2ql1k.png)
Apply the Quotient Law for Limits, which states that the limit of a quotient of functions equals the quotient of the limit of each function:
![\frac{\text{d}y}{\text{d}x}=e^(3x-5)\cdot \left[\frac{\displaystyle\lim_(n \to 0)3}{\displaystyle\lim_(n \to 0)\ln(n+1)^{(1)/(n)}}\right]](https://img.qammunity.org/2024/formulas/mathematics/high-school/avtonqy79785imusxnlp7ro09i157eypf4.png)
Therefore, the numerator is a constant:
![\frac{\text{d}y}{\text{d}x}=e^(3x-5)\cdot \left[\frac{3}{\displaystyle\lim_(n \to 0)\ln(n+1)^{(1)/(n)}}\right]](https://img.qammunity.org/2024/formulas/mathematics/high-school/dhzai7pl9518lm51jb4ls52kfmgjbo078a.png)
The limit of a function is the function of the limit.
Move the limit inside and take the natural log of that limit:
![\frac{\text{d}y}{\text{d}x}=e^(3x-5)\cdot \left[\frac{3}{\displaystyle \ln\left(\lim_(n \to 0)(n+1)^{(1)/(n)}\right)}\right]](https://img.qammunity.org/2024/formulas/mathematics/high-school/cy4zlma8bd3q8h8xsne876o0gc1127xw46.png)
The definition of e is:

Therefore:
![\frac{\text{d}y}{\text{d}x}=e^(3x-5)\cdot \left[(3)/(\displaystyle \ln\left(e\right))\right]](https://img.qammunity.org/2024/formulas/mathematics/high-school/1018j1q7rlymvm0v34comdkqi5c3q9oj7j.png)
As ln(e) = 1, then:
![\frac{\text{d}y}{\text{d}x}=e^(3x-5)\cdot \left[(3)/(1)\right]](https://img.qammunity.org/2024/formulas/mathematics/high-school/rc0edfslt3xlgy3ctr2imwv6ak8nw6vsq2.png)

