asked 60.0k views
2 votes
Let y = 3√F and y = x^3, draw the region bounded by the curves. Then, use the washer method to find the volume when the region is revolved around the y-axis.

1 Answer

3 votes

Explanation:

To find the region bounded by the curves and use the washer method to calculate the volume, we need to solve the given equations and identify the bounds for the region. Let's go through the steps:

Step 1: Solve the equations to find the bounds.

From the first equation, y = 3√F, we can rewrite it as F = (y/3)^3.

From the second equation, y = x^3, we can rewrite it as x = y^(1/3).

To find the bounds, we need to equate F and x:

(y/3)^3 = y^(1/3)

To solve this equation, let's raise both sides to the power of 3:

(y/3)^9 = y

Simplifying further:

y^9 / 3^9 = y

y^9 = 3^9 * y

y^9 - 3^9 * y = 0

Factoring out y, we get:

y(y^8 - 3^9) = 0

Setting each factor equal to zero, we have two possible solutions:

y = 0 and y^8 - 3^9 = 0

Solving the second equation:

y^8 = 3^9

Taking the 8th root of both sides:

y = (3^9)^(1/8)

y = 3^(9/8)

Therefore, the bounds for the region are y = 0 and y = 3^(9/8).

Step 2: Draw the region bounded by the curves.

Now that we have the bounds, we can plot the region on a graph using these limits for the y-values. The region is bound by the curves y = 3√F and y = x^3. However, we solved the equations for y, so we will be plotting y = 3√F and y = (x^3)^(1/3) or y = x.

The graph of the region should resemble a curved shape extending from y = 0 to y = 3^(9/8). However, without specific values for F or x, we cannot provide an exact graph. I encourage you to plot it on graph paper or using graphing software to visualize the region.

Step 3: Use the washer method to find the volume.

To find the volume of the region when revolved around the y-axis using the washer method, we integrate the difference of the outer and inner radii of each washer.

The outer radius, R, is given by R = x (since we revolve around the y-axis, x is the distance from the axis to the outer edge).

The inner radius, r, is given by r = 3√F.

The differential volume of each washer, dV, is then given by dV = π(R^2 - r^2) dy.

Integrating this expression from y = 0 to y = 3^(9/8), we can find the total volume:

V = ∫[0 to 3^(9/8)] π(x^2 - (3√F)^2) dy

As F and x are related by the equations given, we can express F in terms of y: F = (y/3)^3.

Substituting this into the equation, we have:

V = ∫[0 to 3^(9/8)] π(x^2 - (3√((y/3)^3))^2) dy

Simplifying further and evaluating the integral will give you the final volume.

Please note that without specific values or bounds for F or x, we cannot provide the exact numerical value of the volume.

answered
User Pandalover
by
8.6k points
Welcome to Qamnty — a place to ask, share, and grow together. Join our community and get real answers from real people.