asked 161k views
3 votes
What is the solution to the equation:

5(n - 1/10) = 1/2
a. n= 13/5
b. n= 3/25
c. n= 0
d. n= 1/5

2 Answers

3 votes

To solve the equation
\sf 5(n - (1)/(10)) = (1)/(2) \\ for
\sf n \\, we can follow these steps:

Step 1: Distribute the 5 on the left side:


\sf 5n - (1)/(2) = (1)/(2) \\

Step 2: Add
\sf (1)/(2) \\ to both sides of the equation:


\sf 5n = (1)/(2) + (1)/(2) \\


\sf 5n = 1 \\

Step 3: Divide both sides of the equation by 5 to isolate
\sf n \\:


\sf (5n)/(5) = (1)/(5) \\


\sf n = (1)/(5) \\

Therefore, the solution to the equation
\sf 5(n - (1)/(10))\ = (1)/(2) \\ is
\sf n = (1)/(5) \\, which corresponds to option (d).


\huge{\mathfrak{\colorbox{black}{\textcolor{lime}{I\:hope\:this\:helps\:!\:\:}}}}

♥️
\large{\underline{\textcolor{red}{\mathcal{SUMIT\:\:ROY\:\:(:\:\:}}}}

answered
User Keosha
by
8.4k points
5 votes

SolutioN:-


\sf \longrightarrow \: 5 \bigg( \: n - (1)/(10) \bigg) = (1)/(2) \\


\sf \longrightarrow \: 5 \bigg( \: (n)/(1) - (1)/(10) \bigg) = (1)/(2) \\


\sf \longrightarrow \: 5 \bigg( \: (10 * n - 1 * 1)/(1 * 10) \bigg) = (1)/(2) \\


\sf \longrightarrow \: 5 \bigg( \: (10n - 1)/( 10) \bigg) = (1)/(2) \\


\sf \longrightarrow \: \: (50n - 5)/( 10) = (1)/(2) \\


\sf \longrightarrow \: \: 2(50n - 5) =1(10) \\


\sf \longrightarrow \: \: 2(50n - 5) =10 \\


\sf \longrightarrow \: \: 100n - 10=10 \\


\sf \longrightarrow \: \: 100n =10 + 10\\


\sf \longrightarrow \: \: 100n =20\\


\sf \longrightarrow \: \:n = \frac{2 \cancel{0}}{10 \cancel{0}} \\


\sf \longrightarrow \: \:n = (1)/(5) \\

Answer:-

  • Answer:- D) n = ⅕ ✅
answered
User Stefon
by
8.4k points

No related questions found