asked 231k views
0 votes
Divide 16 into the ratio 3:5

asked
User VVV
by
8.3k points

2 Answers

5 votes

Answer:


6,10

Explanation:

Method 1:


\mathrm{Let\ two\ numbers\ be\ x\ and\ y\ such\ that:}\\\mathrm{x:y=3:5\ \ \ \ and\ \ \ \ x+y=16}\\\mathrm{or,\ (x)/(y)=(3)/(5)}\\\\\mathrm{or,\ 5x=3y..........(1)}\\\mathrm{Also\ we\ have}\\\mathrm{x+y=16}\\\mathrm{or,\ 5(x+y)=5(16)}\\\mathrm{or,\ 5x+5y=80}\\\mathrm{or,\ 3y+5y=80\ [From\ equation\ 1]}\\\mathrm{or,\ 8y=80}\\\mathrm{or,\ y=10}\\\mathrm{From\ equation\ 1,}\\\mathrm{5x=3y}\\\mathrm{or,\ 5x=3(10)=30}\\\mathrm{\therefore x=6}


\mathrm{So,\ the\ two\ numbers\ are\ 6\ and\ 10.}

Alternative method 1:


\mathrm{Let\ the\ two\ numbers\ be\ x\ and\ 16-x.}\\\mathrm{Then,\ we\ have}\\\mathrm{x:(16-x)=3:5}\\\\\mathrm{or,\ (x)/(16-x)=(3)/(5)}\\\\\mathrm{or,\ 5x=3(16-x)=48-3x}\\\mathrm{or,\ 5x+3x=48}\\\mathrm{or,\ 8x=48}\\\mathrm{\therefore x=6}\\\mathrm{So,\ the\ other\ number=16-x=16-6=10}


\mathrm{So,\ the\ two\ numbers\ are\ 6\ and\ 10.}

Alternative method 2:


\mathrm{Let\ the\ two\ numbers\ be\ 3x\ and\ 5x.}\\\mathrm{Then,}\\\mathrm{3x+5x=16}\\\mathrm{or,\ 8x=16}\\\mathrm{or,\ x=2}\\\mathrm{So,\ first\ number=3x=3(2)=6}\\\mathrm{Second\ number=5x=5(2)=10}


\mathrm{So,\ the\ two\ numbers\ are\ 6\ and\ 10.}

answered
User Render
by
8.1k points
3 votes
5.3 : 26.5

Hope that makes sense and it helps!!
answered
User Smang
by
8.6k points

No related questions found

Welcome to Qamnty — a place to ask, share, and grow together. Join our community and get real answers from real people.