asked 221k views
2 votes
If the graph of the exponential function y = abx is increasing, then which of the following is true?

A. “a” is the initial value and “b” is the growth factor.

B. “a” is the initial value and “b” is the decay factor.

C. “a” is the growth factor and “b” is the rate.

D. “a” is the rate and “b” is a growth value.​

1 Answer

0 votes

Answer:

A)

Explanation:

The correct answer is A. "a" is the initial value and "b" is the growth factor.

In an exponential function of the form y = ab^x, the initial value, represented by "a," determines the y-value when x = 0. It is the starting point or the y-intercept of the graph.

The growth or decay factor, represented by "b," determines the rate at which the function grows or decays as x increases. If the graph of the exponential function is increasing, it means that the values of y are getting larger as x increases. This can only happen if the growth factor "b" is greater than 1.

Therefore, option A correctly identifies that "a" is the initial value, and "b" is the growth factor, indicating that as x increases, the function's values grow exponentially.

answered
User Nicobatu
by
7.4k points