The point labeled D is to the right of the intersection of the two linear functions. This means that its x-coordinate is greater than the x-coordinate of the point of intersection.
We can find the point of intersection by setting the two functions equal to each other:
3x + 4 = (-1/2)x - 5
Solving for x, we get:
(7/2)x = -9
x = -18/7
So the point of intersection is (-18/7, -29/7).
Since the x-coordinate of point D is greater than -18/7, we can eliminate options A and C.
Now we need to check whether option B or option D includes point D as a solution. To do this, we can simply plug in the coordinates of D into the two inequalities and see which one holds true.
Option B:
f(x) ≥ 3x + 4
2 ≥ 3(D) + 4
2 ≥ 3D + 4
-2 ≥ 3D
D ≤ -2/3
g(x) ≤ (-1/2)x - 5
2 ≤ (-1/2)(D) - 5
7 ≤ -D
D ≥ -7
Since -2/3 is less than -7, option B does not include point D as a solution.
Option D:
f(x) ≥ 3x + 4
2 ≥ 3(D) + 42 ≥ 3D + 4
-2 ≥ 3D
D ≤ -2/3
g(x) ≥ (-1/2)x - 5
2 ≥ (-1/2)(D) - 5
7 ≥ -D
D ≤ -7
Since -2/3 is less than -7, option D does not include point D as a solution either.
Therefore, neither option B nor option D includes point D as a solution. The correct answer is that neither system of inequalities has point D as a solution.