asked 88.9k views
3 votes
The distance that a freefalling body falls in each second starting with the first second is given by the arithmetic progression 16, 48,80,112

find the distance, the body falls in the seventh second

asked
User MarkHu
by
8.3k points

1 Answer

3 votes

Answer:

208 units

Explanation:

The first term is given as 16, which means a = 16.

The second term can be obtained by adding the common difference to the first term: 16 + d = 48.

The third term is obtained by adding the common difference to the second term: 48 + d = 80.

The fourth term is obtained by adding the common difference to the third term: 80 + d = 112.

We can solve these equations to find the value of 'd':

16 + d = 48

d = 48 - 16

d = 32

48 + d = 80

32 + 48 = 80 (valid)

80 + d = 112

32 + 80 = 112 (valid)

Therefore, the common difference is 32.

Now that we have the common difference, we can find the distance the body falls in the seventh second.

The formula for finding the nth term of an arithmetic progression is:

a_n = a + (n - 1) * d

where a_n is the nth term, a is the first term, n is the position of the term, and d is the common difference.

Plugging in the values, we can find the seventh term:

a_7 = 16 + (7 - 1) * 32

a_7 = 16 + 6 * 32

a_7 = 16 + 192

a_7 = 208

Therefore, the distance the body falls in the seventh second is 208 units.

answered
User Thania
by
8.4k points
Welcome to Qamnty — a place to ask, share, and grow together. Join our community and get real answers from real people.