Answer:
-128
Explanation:
Given, f(x)=2x 
3
 −21x 
2
 +36x−20
∴f 
′
 (x)=6x 
2
 −42x+36
When f(x) is a maximum or a minimum, f 
′
 (x)=0
Hence, 6x 
2
 −42x+36=0
x 
2
 −7x+6=0
x 
2
 −6x−x+6=0
x(x−6)−1(x−6)=0
(x−6)(x−1)=0
x=1,6
Again f 
′′
 (x)=12x−42
=6(2x−7)
Now, when x=1,f 
′′
 (x)=−30 ....[negative]
And when x=6,f 
′′
 (x)=30 ....[positive]
Hence, f(x) is maximum for x=1 and minimum for x=6.
The maximum and minimum values of f(x) are
f(1)=2(1) 
3
 −21(1) 
2
 +36(1)−20
=2−21+36−20=−3
f(6)=2(6) 
2
 −21(6) 
2
 +36(6)−20
=432−756+216−20=−128