asked 29.1k views
4 votes
Calculate the volume of the cone slant height 25 radius 15

1 Answer

6 votes

Answer:

The volume of cone is 125600.

Step-by-step Step-by-step explanation :

GIVEN :


  • \pink\star Slant height of cone = 25

  • \pink\star Radius of cone = 15

TO FIND :


  • \pink\star Volume of cone

USING FORMULAS :


\dashrightarrow{\sf{{(l)}^(2) = {(r)}^(2) + {(h)}^(2)}}


\dashrightarrow{\sf{V_((Cone)) = (1)/(3) \pi {r}^(3)h}}


  • \purple\star l = slant height

  • \purple\star V = volume

  • \purple\star π = 3.14

  • \purple\star r = radius

  • \purple\star h = height

SOLUTION :

Firstly, finding the height of cone by substituting all the given values in the formula :


\begin{gathered} \qquad{\dashrightarrow{\sf{{(l)}^(2) = {(r)}^(2) + {(h)}^(2)}}} \\ \\\qquad{\dashrightarrow{\sf{{(25)}^(2) = {(15)}^(2) + {(h)}^(2)}}} \\ \\ \qquad{\dashrightarrow{\sf{(625) = (225)+ {(h)}^(2)}}} \\ \\ \qquad{\dashrightarrow{\sf{{(h)}^(2) = 625 - 225}}} \\ \\ \qquad{\dashrightarrow{\sf{{(h)}^(2) = 400}}} \\ \\ \qquad{\dashrightarrow{\sf{h = √(400)}}} \\ \\ \qquad{\dashrightarrow{\sf{\underline{\underline{h = 20}}}}} \end{gathered}

Hence, the height of cone is 20.


\rule{200}2

Now, calculating the volume of cone by substituting all the given values in the formula :


\begin{gathered} \qquad{\dashrightarrow{\sf{V_((Cone)) = (1)/(3) \pi {r}^(3)h}}} \\ \\ \qquad{\dashrightarrow{\sf{V_((Cone)) = (1)/(3) * 3.14 * {(20)}^(3) * 15}}} \\ \\ \qquad{\dashrightarrow{\sf{V_((Cone)) = 3.14 * {(20)}^(3) * 5}}} \\ \\ \qquad{\dashrightarrow{\sf{V_((Cone)) = 3.14 * 8000 * 5}}} \\ \\ \qquad{\dashrightarrow{\sf{V_((Cone)) = 15.7* 8000}}} \\ \\ \qquad{\dashrightarrow{\sf{\underline{\underline{V_((Cone)) = 125600}}}}}\end{gathered}

Hence, the volume of cone is 125600.

————————————————

answered
User Damonsson
by
7.8k points

No related questions found