asked 10.8k views
0 votes
1 / tan²Ꮎ write in terms of sin Ꮎ .​

asked
User Jdphenix
by
8.0k points

1 Answer

2 votes


\huge\begin{array}{ccc}(1)/(\tan^2\theta)=(1-\sin^2\theta)/(\sin^2\theta)=(1)/(\sin^2\theta)-1\end{array}

Trigonometry.

We know:


\sin^2x+\cos^2x=1\\\\\text{tan}x=(\sin x)/(\cos x)

SOLUTION:

We have:


(1)/(\tan^2\theta)

write it in therms of
\sin\theta.


\tan\theta=(\sin\theta)/(\cos\theta)\Rightarrow\text{tan}^2\theta=\left((\sin\theta)/(\cos\theta)\right)^2=(\sin^2\theta)/(\cos^2\theta)


\sin^2\theta+\cos^2\theta=1\to\cos^2\theta=1-\sin^2\theta

therefore:


\tan^2\theta=(\sin^2\theta)/(\cos^2\theta)=(\sin^2\theta)/(1-\sin^2\theta)

Finally:


(1)/(\tan^2\theta)=(1)/((\sin^2\theta)/(1-\sin^2\theta))=(1-\sin^2\theta)/(\sin^2\theta)=(1)/(\sin^2\theta)-(\sin^2\theta)/(\sin^2\theta)=(1)/(\sin^2\theta)-1

answered
User Buddhabrot
by
7.7k points
Welcome to Qamnty — a place to ask, share, and grow together. Join our community and get real answers from real people.